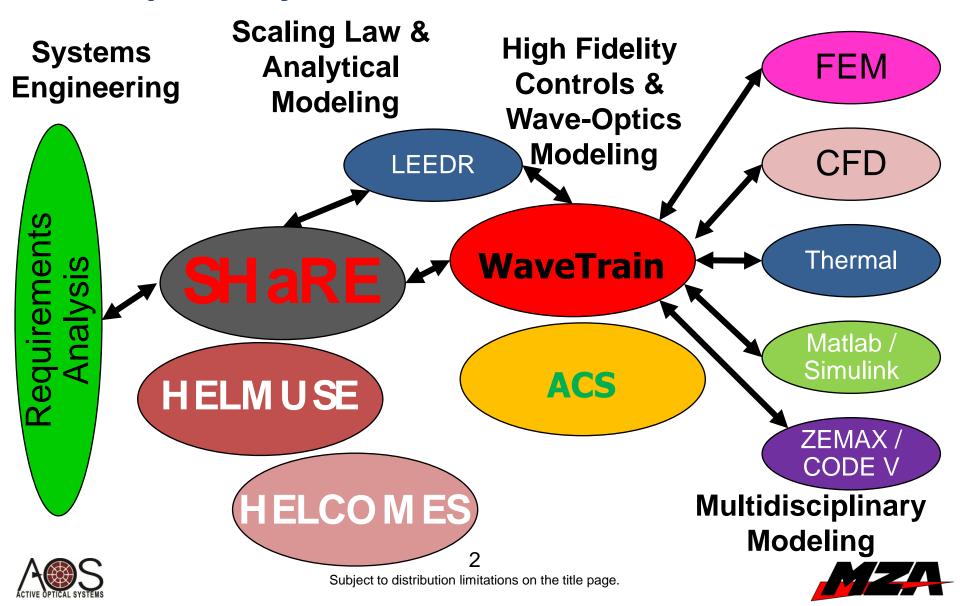
Simplified Software Tools for Beam Control System Evaluation and Development

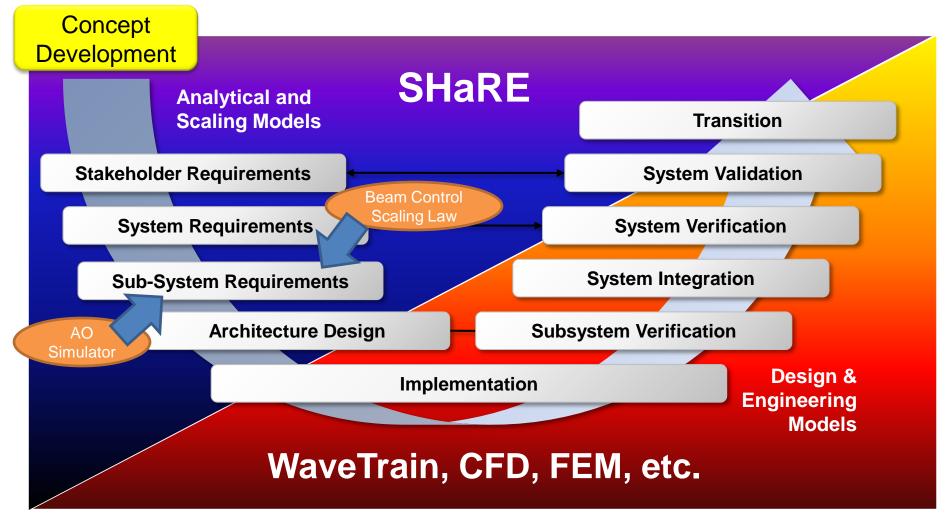
Dr. Justin D. Mansell and Brian G. Henderson

MZA Associates Corporation & Active Optical Systems, LLC

www.mza.com / www.aos-llc.com


Justin.Mansell@mza.com

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.



MZA's Tools Cover Every Part of HEL Weapons System Performance Prediction.

These New GUI Tools Facilitate Beam Control Sub-System Design.

GOAL: GUI tools for rapid design trades and ease of use

- Although MZA's tools cover the entire spectrum of modeling needs, we want to maximize ease of use with GUI interfaces that are:
 - Simple to use and install,
 - Give good fidelity results, and
 - Execute quickly
 - Common Graphical Format
 - Inputs on Left
 - Outputs on Right

Beam Control Design Software is based on Analytical Expressions

- Used relationships in the open literature to model performance.
- Attempted to create a GUI that is easy to use, fast, and convenient.

$$r_{0} = \left[\frac{0.423k^{2}}{\cos(\beta)} \int_{0}^{L} C_{n}^{2}(z) dz\right]^{-3/5}$$

$$\theta_{0} = \left[2.91k^{2} \int_{0}^{L} C_{n}^{2}(z) z^{5/3} dz\right]^{-3/5}$$

$$\sigma_{uncomp}^{2} = 1.02 \left(\frac{D}{r_{0}}\right)^{5/3}$$

$$\sigma_{tilt-comp}^{2} = 0.134 \left(\frac{D}{r_{0}}\right)^{5/3}$$

$$f_{G} = 2.31\lambda^{-6/5} \left[\frac{1}{\cos(\beta)} \int_{0}^{L} C_{n}^{2}(z) v_{w}^{5/3}(z) dz \right]^{3/5} \quad \boldsymbol{\sigma}_{total}^{2} = \boldsymbol{\sigma}_{fit}^{2} + \boldsymbol{\sigma}_{temporal}^{2} + \boldsymbol{\sigma}_{tilt}^{2}$$

$$f_{T_G} = 0.331 \frac{D^{-1/6}}{\lambda} \left[\frac{1}{\cos(\beta)} \int_{0}^{L} C_n^2(z) v_w^2(z) dz \right]^{1/2}$$
 Strehl Ratio = exp $\left(-\sigma_{total}^2 \right)$

$$\sigma_{\chi}^{2} = 0.307k^{7/6}L^{11/6}C_{n}^{2}$$

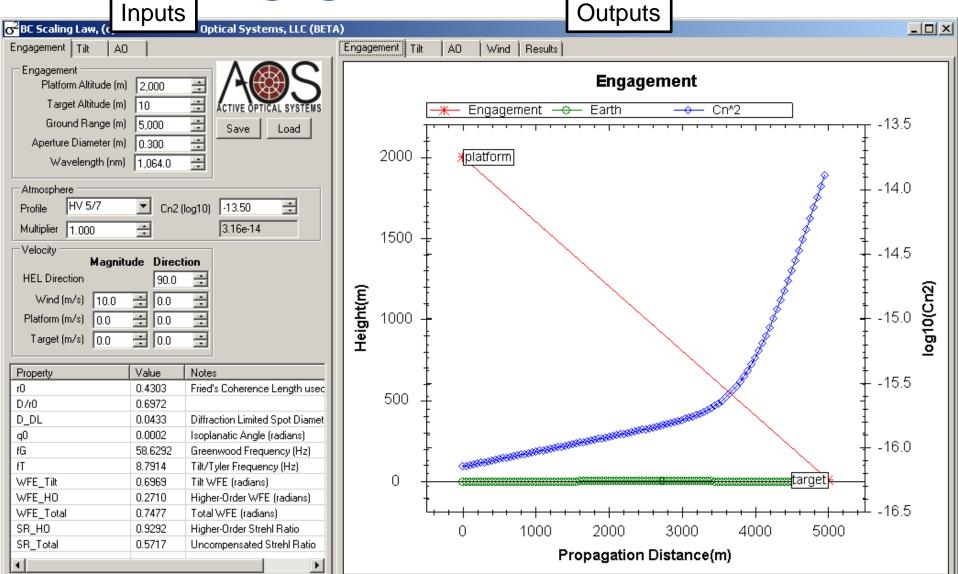
$$\sigma_{fit}^{2} = \kappa \left(\frac{r_{s}}{r_{0}}\right)^{5/3}, \kappa \approx 0.35$$

$$\sigma_{temporal}^{2} = \left(\frac{f_{G}}{f_{3dB}}\right)^{5/3}$$

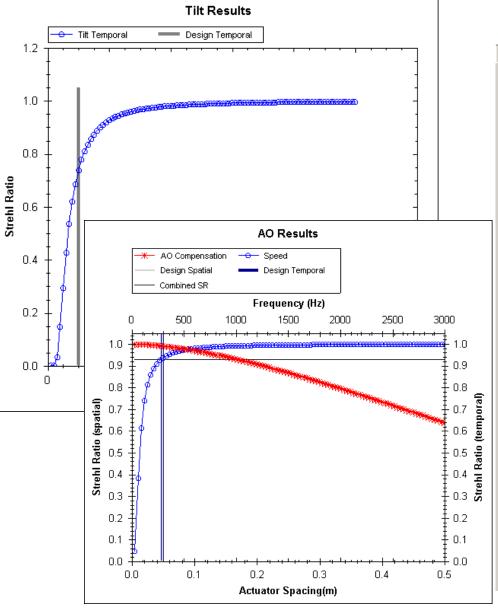
$$\sigma_{tilt}^2 = \left(\frac{f_{T_G}}{f_{3dB}}\right)^2 \lambda^2$$

$$\sigma_{total}^{2} = \sigma_{fit}^{2} + \sigma_{temporal}^{2} + \sigma_{tilt}^{2}$$

Strehl Ratio =
$$\exp(-\sigma_{total}^2)$$


R. Tyson, Principles of Adaptive Optics

BC Sim


Engagement Definition

Example Results

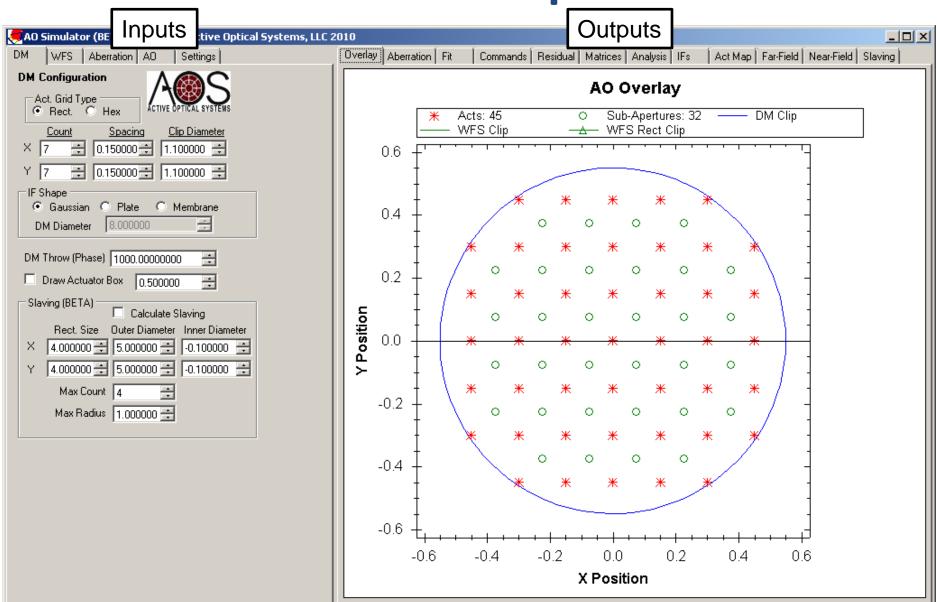
Property	Value	Notes
Engagement		
01	0.4303	Fried's Coherence Length used in Calculat
r0_plane	0.0696	Plane Wave (m)
rO_sph_target	0.0761	Spherical Wave Target (m)
r0_sph_platform	0.4303	Spherical Wave Platform (m)
D/r0	0.6972	
D_DL	0.0433	Diffraction Limited Spot Diameter
q0	0.0002	Isoplanatic Angle (radians)
fG	58.6292	Greenwood Frequency (Hz)
fT	8.7914	Tilt/Tyler Frequency (Hz)
WFE_Tilt	0.6969	Tilt WFE (radians)
WFE_HO	0.2710	Higher-Order WFE (radians)
WFE_Total	0.7477	Total WFE (radians)
SR_HO	0.9292	Higher-Order Strehl Ratio
SR_Total	0.5717	Uncompensated Strehl Ratio
Tilt Compensation		
Tilt Temporal Variance	0.5524	Tilt Variance
Tilt Temporal SR	0.7370	Tilt Temporal Strehl Ratio
AO Compensation		
Nact_est	28	Estimated Number of Actuators
WFE_Comp_Spatial	0.0984	Compensated Spatial WFE
WFE_Comp_Temporal	0.2565	Compensated Temporal WFE
SR_Comp_Spatial	0.9904	SR from Compensated Temporal WFE
SR_Comp_Temporal	0.9363	SR from Temporal WFE
System Performance		
WFE_Compensated	0.6153	Compensated WFE
SR_Compensated	0.6848	Compensated Strehl Ratio

XML Configuration Saving and Loading

- Results and setup can be saved and load with XML files.
- Working on SHaRE compatibility.

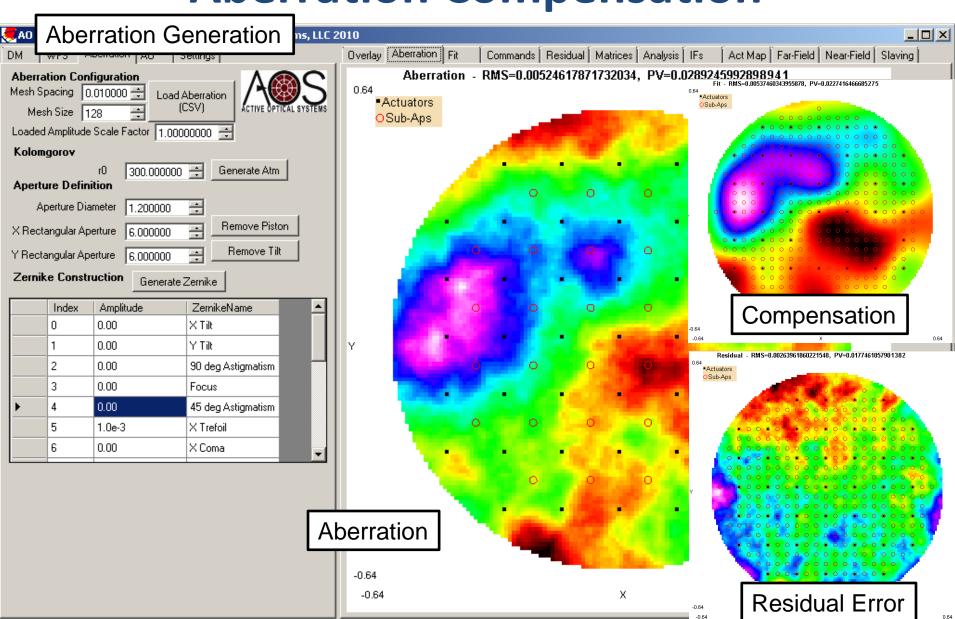
```
□<?xml version="1.0" encoding="Windows-1252"?><!--Beam Control Scaling Law Simulation</p>
 <nudWavelengthNM>1064/nudWavelengthNM>
 <nudRange>5000</nudRange>
 <nudTargetAltitude>2000</nudTargetAltitude>
 <nudPlatformAltitude>1/nudPlatformAltitude>
 <nudDap>0.3</nudDap>
 <tbDr0>4.3122</tbDr0>
 <tbPlatformTheta0>0.0006</tbPlatformTheta0>
 <tbGreenwoodFreq>141.4163</tbGreenwoodFreq>
 <tbRytov>0.0118</tbRytov>
 <tbRMSWFE>8.8656</tbRMSWFE>
 <tbUncompStrehlRatio>7.33e-35</tbUncompStrehlRatio>
 <tbPlatformr0>0.0696</tbPlatformr0>
 <nudHELDirection>90</nudHELDirection>
 <nudTargetDirection>0</nudTargetDirection>
 <nudPlatformDirection>0</nudPlatformDirection>
 <nudWindDirection>0</nudWindDirection>
 <nudTargetVelocity>100</nudTargetVelocity>
 <nudPlatformVelocity>0</nudPlatformVelocity>
 <nudWindVelocity>10</nudWindVelocity>
 <nudTiltBandwidth>300</nudTiltBandwidth>
 <tbTiltStrehl>0.7897</tbTiltStrehl>
 <tbTiltTempVariance>0.2361</tbTiltTempVariance>
 <tbTiltGreenwoodFreq>23.2008</tbTiltGreenwoodFreq>
 <tbNact2D>78.5398</tbNact2D>
 <tbCompStrehlRatio>0.6181</tbCompStrehlRatio>
 <tbCompWFE>0.6936</tbCompWFE>
 <tbSpatialWFE>0.2935</tbSpatialWFE>
 <tbTemporalSR>0.8648</tbTemporalSR>
 <tbTempWFE>0.3811</tbTempWFE>
 <tbSpatialSR>0.9175</tbSpatialSR>
 <nudActSpacing>0.03</nudActSpacing>
 <nudKappa>0.35</nudKappa>
 <nudA0Bandwidth>450</nudA0Bandwidth>
 <tbCombinedVariance>0.7172</tbCombinedVariance>
 <tbCombinedStrehl>0.4881</tbCombinedStrehl>
 </root>
        8
```


AO Simulator: Goals & Objectives


- Enable GUI interactive AO Simulation
- Easy to use and install
- Strong Physics-Based Approach
- Accurate adaptive optics system modeling
- Flexible
 - Different types of DMs
 - Different kinds of WFS feedback
- WaveTrain Compatible
 - Enable outputs to be read into WaveTrain

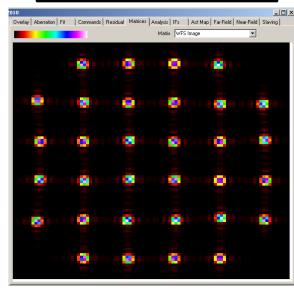
AO Sim

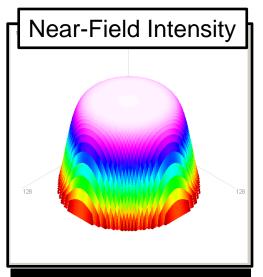
AO Setup

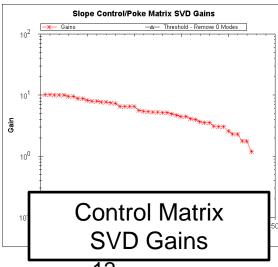


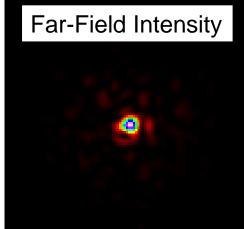
AO Sim

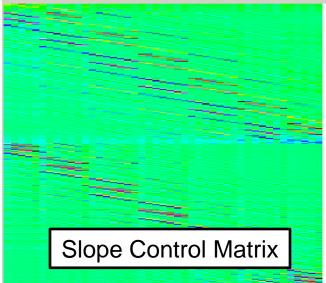
Aberration Compensation

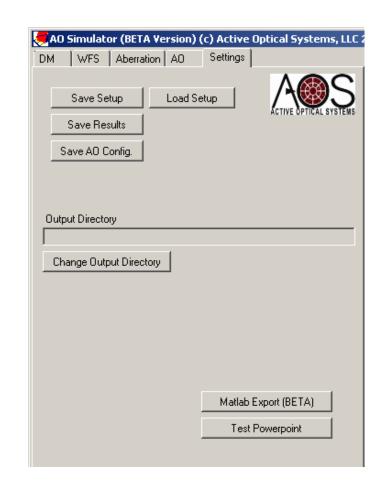

AO Sim


Generates Control Matrices, Far-Field Images,


and WFS Images


Slope Poke Matrix





File Exporting to .XML, .PPT, and .MAT

- Saves and loads setup to an XML file.
- Saves results and AO configuration to XML.
- Saves a WaveTrain & Matlab compatible .MAT file of the AO setup.
- Saves results to PowerPoint.

Conclusions & Future Work

- We presented a beam control system evaluation tool and an AO system evaluation tool with a simple GUI interface for nonprogrammers.
- We are going to continue verification and validation and look toward a tighter integration with WaveTrain and SHaRE.
- Enable system setup to be loaded directly into SHaRE and WaveTrain

Questions?

Justin.Mansell@mza.com

